Practical implementation of Spigot Algorithms for Transcendental Constants

Practical implementation of Spigot Algorithms for
Transcendental Constants

By Henrik Vestermark (hve@hvks.com)

Abstract:

This paper examined the various modern version of spigot algorithm for calculating
transcendental constant like m, e, In(2) and In(10) to unlimited precision. It layout the
algorithm and the timing for the constants and compare it with a traditional
implementation using arbitrary precision arithmetic. It is found that the performance of
spigot algorithm beats the traditional method using arbitrary precision with several
factors and it is therefore recommend to be used instead, when performance is needed.

Introduction:

In a previous paper finding practical algorithms for m, I introduced the bounded spigot
algorithm for finding m with arbitrary precision. This paper expand on this to also show

that spigot algorithm can be useful for calculating other transcendental constant like e,
In(2) and In(10)

The paper is divided into two sections. Section 1 is calculating transcendental e constants
using bounded spigot algorithm while section 2 is dedicated to the unbounded versions.
The bounded spigot algorithm is an alternative way of generating transcendental
constants and does not require us to resort to arbitrary precision arithmetic but can stick
with simple integer arithmetic in either 32-bit or 64-bit versions. As always, we list C++
source code for the practical implementation of theses algorithms.

Change log

This revision add the unbounded spigot algorithm for pi and make minor change
throughout the document from the original paper from 2017.

23 August 2022 Page 1

Practical implementation of Spigot Algorithms for Transcendental Constants

Contents
Practical implementation of Spigot Algorithms for Transcendental Constants 1
AADSTIACT: ..ttt h e et b et e bt e bt e e bt e b e e eate et e aeeeaee 1
INErOAUCTION: ...ttt ettt sttt et b et e e e eaee 1
CRANEE LOZ ..eenviieiie ettt et e ettt e e e e e be e e aveesbaeesaaaeessseeennseeesaeensseeenns 1
BBP NOTATION ...ttt ettt st ettt st e e sae e et enbe e 3
Bounded Spigot algorithm for transcendental constantscccceeeeveereenenienenienennnn 3
Rabinowitz-Wagon Spigot Algorithms for T..........cccoeiiiiiiiiiiie e 3
Gosper AlOTItRMS fOT TU.....oiiiiiiiiieccee e e e e e sbee e easee e 9
Spigot AIZOTItRM fOT ©....eocviiiiiiiiiciiee e e 14
Spigot AIZorithm fOr IN(2)eeeeeiiieiieeie e e e 18
Spigot algorithm for IN(10)coeeuieiieriieii e e 23
Unbounded Spigot algorithm fOr Tcccviiriiiiiecee e 32
RETETEICE ...ttt ettt et sttt et 33

23 August 2022 Page 2

Practical implementation of Spigot Algorithms for Transcendental Constants

BBP Notation

There exist a large number of series that can all be generalized for short hand using the
following notation:

[oe) n

PebnD =D Tt
S,0,MA)=) %) T ~s
b j=1(kn+])

k=0

Where s, b, n, are integers and A denote a vectors of integers A = (a4, ay, ..., ap).

Bounded Spigot algorithm for transcendental constants

Rabinowitz-Wagon Spigot Algorithms for n

The spigot algorithm for calculating t was discovered by Rabinowitz-Wagon in 1990 See
[12]. The formula is remarkable simple and does not required any fancy computing juts
the basic operation like, add, subtract, multiply and divide and can be implemented using
only integer arithmetic.

However, it still requires that in order to compute the n-digits of w, you still need to
calculate all the receding n-1 digits.

The spigot algorithm is based on the expansion for m:
d (n!)22n+1
= —_—
2n+ 1)
n=0

This series can be expanded into a Horner type schema.
To see that we can just run the first couple of expansion e.g. n=0,1,2:

()22 1x2 122 (21)% %23
nzz = + + +
2n+ 1)! 1! 3! 5!

n=0
1*2+22*2*2*2+
2x%3 2*x3*%x4x%5

2+ 72

2+21+212+ —2+12+2(2)
3 735 B 3(5)

23 August 2022 Page 3

Practical implementation of Spigot Algorithms for Transcendental Constants

This series expands out using the Horner schema into:

_ 12 2 5 3) n
T = +§(-|—§ +7 (+2Tl+1()>)

This is known to be a mixed-radix base ¢ = G,%, %, %,) with respect to 1=(2;2,2,2,..).

You can setup a simple excel sheet calculating the digits in & as the one below, se [12] for
a detailed explanation of the formula in each cell. The & digit is showing up in the gray
column below as 3.1415. Now the number of terms you would need to calculate n digits

of the digits is bound by (5= + 1) see [13].

Spigot it
Terms o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A= 61 2 3 4 5 6 7 8 9 10 11 12 13 14
B= 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Initialize 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Scale 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
Carry 3 10 12 12 12 10 12 7 8 9 0 0 0 0 0
Sum 30 32 32 32 30 32 27 28 29 20 20 20 20 20 20
remainders O 2 2 4 3 10 1 13 12 1 20 20 20 20 20
Scale 0O 20 20 40 30 100 10 130 120 10 200 200 200 200 200
Carry 1 13 20 33 40 65 48 98 88 81 170 165 156 130 84
Sum 13 40 53 80 95 148 108 218 201 180 365 356 330 284 200
remainders 3 1 3 3 5 5 4 8 14 9 8 11 5 14 26
Scale 30 10 30 30 50 50 40 80 140 90 80 110 50 140 260
Carry 4 11 24 30 40 45 54 77 9% 72 70 77 72 117 112
Sum 41 34 60 70 95 104 117 176 212 160 157 182 167 252 260
remainders 1 1 0 O 5 5 0 11 8 8 10 21 17 9 28
Scale 10 10 0 O 50 50 0O 110 80 80 100 210 170 90 280
Carry 1 5 6 15 36 35 36 84 80 90 120 154 120 104 126
Sum 15 16 15 36 85 86 84 190 170 200 254 330 274 216 280
remainders 5 1 O 1 4 9 6 10 0 10 2 8 24 0 19
Scaler 50 10 O 10 40 90 60 100 O 100 20 80 240 O 190
Carry 5 6 8 21 44 60 48 56 24 63 50 99 132 39 84
Sum 56 18 21 54 100 138 116 124 63 150 119 212 279 84 190

23 August 2022 Page 4

Practical implementation of Spigot Algorithms for Transcendental Constants

Thanks to Dik Winter and Achim Flammenkamp they publish a condense version in the
C language version of the algorithm that produce four digits at a time using only integer
arithmetic. That version was later on beautified by Gibbons and bought below. The
algorithm is said to be bounded meaning that it requires the desired number of digits you
want to calculate 7 to prior. Gibbons in [13] establish an equivalent unbounded algorithm
that just procedure a steady stream of & digits. The algorithm below procedure 4 digits of
7 per iterations. The number 14 below is coming from the number of terms formula

above: (o= +1) = (= + 1) = 14

Algorithm 1.1 Spigot Gibbons

#define NDIGITS 15000 /*max.digits to compute*/
#define LEN (NDIGITS/4+1)*14 /*nec.arraylength*/

Int a[LEN]; /*arrayofd4digit-decimals*/
Int b; /*nominatorprev.base*/

Int c=LEN; /*index*/

Int d=0; /*accumulatorandcarry*/
Int e=0; /*saveprev.4digits*/

Int £=10000; /*newbase, 4dec.digits*/
Int g; /*denomprev.base*/

Int h=0; /*initswitch*/

//Spigotalgorithms 4
Int main() {

for (; (b=c-=14)>0;) /*outerloop:4digits/loop*/
{
for (; --b>0;) /*innerloop:radixconv*/
{
d*=b; /*acc*=nom.prevbase*/
if (h==0)
d+=2000*f; /*firstouterloop*/
else

d+=al[b]*f; /*non-firstouterloop*/
g=b+b-1; /*denomprev.base*/
a[bl=d%g;
d/=g; /*savecarry*/
}
h=printf ("%04d",e+d/f) ; /*printprev 4 digits*/
d=e=d%f; /*savecurrent 4 digits*/
}
return0;

}

The Algorithm above can deliver approx. 15,000 digits of © without going into overflow.
Let us try to improve that and make it more useful to generate more number of © digits.
The first improving we can do is to use 32bit unsigned integer arithmetic instead of
signed that will take the above algorithm to handle 30,723 & digits before it goes into
overflow. See below.

23 August 2022 Page 5

Practical implementation of Spigot Algorithms for Transcendental Constants

The biggest issue is overflow in the accumulator variable d. Since we for four digits at a
time are initially multiplying the 2,000 with the constant F that is 10,000 and add it to the
accumulator d, we add a digit that is of magnitude of 2*107. The maximum digit that can
be hold using 32bit unsigned integer arithmetic is ~ 4*10° and that why the algorithm
goes into overflow shortly after 30,000 digits of w has been calculated.

The next think we can do is to lower the number of digit to add for each iterations,
instead of 4 digit at a time we can change to e.g. 3 which increase the number of digit for
7 to a maximum of 293,261 before we go into overflow. Continue down that road we can
increase the digits for PI to ~2,8Million digit and further to more than 26 million digits if
we only find one digit at a time. However, this is not without a time penalty. See picture
below that show the speed in milliseconds as a function of how many digits of © you need
to calculate. The test was performed on an I7 CPU with a quad processer and 2.6MHz
clock frequency. If you follow the blue line (m with 32,767 digits), you can see that below
four digits at a time you see and dramatic increase in time on the other hand if you
increase the number of digits per iteration to eight you make the algorithm twice as fast.
However, that is not possible with below algorithm that only use 32-bit integer
arithmetic. The maximum number of digits it can handle is five digits at a time but that
will limited the digits of @ to 3,474 before it goes into overflow.

Spigot performance in msec vs. digits

50, 00p

40, 00p

30, 00o

Ais Title

1o, 00p

0 2006 —737763

1 2 3 4 Axis Title 5 6 7 8

Gibbons version of the © has a flaw that is not exposed with four digits at a time with the
limited number of digits it can generate but is visible with lowering the number of digits.
That is an overflow in the printout of e+d/f in the statement

23 August 2022 Page 6

Practical implementation of Spigot Algorithms for Transcendental Constants

h=printf ("%04d",e+d/f);

The issue is that it sometimes generate a carry that

is not added to the & digit for the

previous digit and therefore it failed to generate the correct result for n. Instead, we
change it to accumulate the m digits into a std::string from the C++ standard template
library. That way when a carry is detected we can propagate the carry back into the

already calculated digit correctly.

The 32bit & 64bit version of the final algorithm is

32-bit version:

Algorithm 1.2 pi spigot 32()

/7

'

32bit version of the spigot algorithm.

ig = 4)

std::string pi_spigot_32(const int digits, int no
{

100,
20,

1000,
200,

10000, 100000 };
2000, 20000 };

=1

0, 10,

2,

static unsigned
static unsigned

long f_table[]
long f2_table[] {0,
const int TERMS (10 * no dig / 3 + 1);
bool first_time = true; /1
bool overflow flag = false;
char buffer([32];
std::string ss;

First time in loop
overflow flag

The String that ho

long b, c; /1
int carry, no_carry 0;
unsigned long £, £2;
unsigned long dig n = 0;
unsigned long e =
unsigned long acc =
ss.reserve (digite
ig > 5) n

rrier
imal

e initia
> initial

f2

£2_table[n

unsigned long *a = new unsigned long [c]; // Array of 4 digits

// b is the nominator previous base; c is the index
for (; (b = c -= TERMS) > 0 && overflow flag false;
{

for (; --b > 0 && overflow flag == false;)
{ // Check for overflow

> that the

listed below.

flag
ld the calculated P

, plus no of carroer adjustment counts
digits at a time
digit to add

size to be able to accumulate all digits plus 8

need to ensure

I in trunks of no_dig digit at a time

le by no_dig.

for 1 digit at a time.
digits we seek is divisble by no_dig

2

decimals

first_time = false)

if (acc > ULONG MAX / b) overflow flag true;
acc *= b; /7 umulator *= nom previous base
tmp32 = f;
if (first_time == true) // Test for first run in the main loop

tmp32 *= £2; // First outer loop. al[b] not yet initialized
else

tmp32 *= a[b]; // Non first outer loop. a[b] is initialized in the first loop
if (acc > ULONG_MAX - tmp32) overflow_flag — true; / ck for overflow
acc += tmp32; /7 add it to accumulator
g=b+b-1; // denominated
a[b] = acc % g; //

acc /= gi /1

)
dig n = (unsigned long) (e + acc / f);
carry = (unsigned) (dig_n / £);

dig_n %= f;

Update the a
s carry

. Could occasinaly be no_dig+l digits in
te back the extra digit.
we need to propagate back into

extra carr the

sum of PI

> the extra

that

rier so now 1 contains no_dig digits to add

/ to the string
// Add the carrier to the existing number for PI calculated
if (carry > 0)
{
++no_carry; // Keep count of how many carrier detect
// Loop and pr > back the extra carrier to the existing PI digits found so far
for (int i = ss.length(); carry > 0 && i > 0; i)
// Never seen more than one loop here but it can handle multiple carry back propagation
int new_digit
new_digit = (ss[i - 1] - '0') + carry;
carry = new_digit / 10; carry if any
ss[i - 1] = new_digit % 10 + '0'; // in our PI digit list
)
}
(void) sprintf (buffer, "$0*lu", no dig, dig n); // Print previous no dig digits to buffer

ss += std::string (buffer); // Bdd it to PI string
if (first_time == true)

ss.insert (1, "."); // add the decimal pointafter the fir digit to create 3.14...
acc = acc % f; // s current no_dig digits and repeat loop
e = (unsigned long)acc;
)

if (overflow_flag==false)

23 August 2022

Page 7

Practical implementation of Spigot Algorithms for Transcendental Constants

ss.erase(digits + 1);
else

ss std::string("Overflow:") + ss;
delete a;
return ss;

}

64-bit version

Algorithm 1.3 pi_spigot 64()

//
/7
//
//
/7
//

std::string pi_spigot_ 64 (const int digits,

64bit version of the spigot algorithm.
Notice acc, a, g needs to be unsigned 64bit.
Emperisk for pi to 2”n digits,
numbers

a[] & g could potential be unsigned long
unsigned 64bit you can "unlimited"

(32bit)

int no_dig = 4

{

/7
//

/7
//
/7

acc need to hold approx 2" (n+17)

Remove the extra digits that we didnt requested but used as guard
digits

Set overflow in the return string
Delete the af[];
Return Pi with the number of digits

numbers. while a[] and g needs approx 2" (n+3

going to a max of 2729 digit or 536millions digit of PI. but with

static unsigned long f table[]= { 0, 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000 };
static unsigned long f2_table[] = { O, 2, 20, 200, 2000, 20000, 200000, 2000000, 20000000 };
const int TERMS = (10 * no _dig / 3 + 1);

bool first_time = true; // First time in loop flag

bool overflow_flag = false; // Overflow flag

char buffer([32];

std::string ss; // The String that hold the calculated PI

long b, c; // Loop counters

int carry, no_carry = 0; // Outer loop carrier, plus no of carroer adjustment counts
unsigned long f, f2; // New base 1 decimal digits at a time

unsigned long dig n = 0; // dig_n holds the next no_dig digit to add
unsigned long e = 0; // Save previous no_dig digits

unsigned _int64 acc = 0, g = 0, tmp64;
ss.reserve (digits + 16);

if (no g > 8) n

if (no g < 1) no

c = / no_

if (no_dig == 1) c++;

c = (¢ / no dig + 1) * TERMS;
f = £ _table[no gl:

f2 = f2_table[no_dig];

unsigned _int64 *a = new unsigned _int64([c];

// b is the nominator previous base;

for (; (b = c -= TERMS)
{

for (;

{

if (acc > ULLONG_MAX / b) overflow_ flag =

acc *= b;
tmp64 = f;
if (first_time==true)

tmp64 *= f2;
else
tmp64 *= a[bl;

if (acc > ULLONG_MAX - tmp64)

acc += tmpé64;
g=Db+b-1;
a[b] = acc % g;
acc /= g;

}

dig_n =(unsigned long) (e + acc / f);

--b > 0 && overflow_flag==false;)

// Pre reserve the string size to be able to accumulate

all digits plus 8

/ ensure no_dig<=8

/7
//
//
/7
//
//
//

//

c is the index
> 0 && overflow flag==false;

//

//
//

//
//

overflow_flag =

//
//
/7
//

Ensure no_dig>0

Since we do collect PI in trunks
time we need to ensure digits is
Extra guard digit for 1 digit at
c ensure that the digits we seek
Load the initial f

Load the initial f2

of no dig digit at a
divisble by no_dig.

a time.

is divisble by no_dig

Array of 4 digits decimals

first_ time=false)

// Check for overflow
nom previous base

true;
Accumulator *=

Test for first run in the main loop

First outer loop. a[b] is not yet initialized
Non first outer loop. is initialized in the first
loop

a[b]

true; // Check for overflow
add it to accumulator

denominated previous base

Update the accumulator

save carry

Get previous no_dig digits. Could occasinaly be no_dig+l
digits in which case we have to propagate back the extra
digit.

// Check for extra carry that we need to propagate back into the current sum of PI digits

carry = (unsigned) (dig n / f);
dig_n %= f;

//
//

Eliminate the extra carrier so now 1 contains no_dig
digits to add to the string

// Add the carrier to the existing number for PI calculated so far.

if (carry > 0)
{

++no_carry;

//

Keep count of how many carrier detect

// Loop and propagate back the extra carrier to the existing PI digits found so far

for (int 1 =

{

ss.length();

carry > 0 && i > 0;

——i)

// Never seen more than one loop here but it can handle multiple carry back

// propagation
int new_digit;

new_digit = (ss[i - 1]

carry =
ss[i - 1] =

}
}

(void) sprintf (buffer,
ss += std::string(buffer);
if (first_time==true)

new_digit / 10;
new_digit % 10 + '0';

"%0*1lu", no_dig, dig n);:

- '0") + carry; Calculate new digit
Calculate new carry if any
Put the adjusted digit back in our

PI digit list

// Print previous no_dig digits to buffer
// Add it to PI string

23 August 2022

Page 8

Practical implementation of Spigot Algorithms for Transcendental Constants

ss.insert(l, "."); // add the decimal pointafter the first digit to create 3.14...

acc = acc % f; // save current no_dig digits and repeat loop

e = (unsigned long)acc;

}
ss.erase(digits+l); // Remove the extra digits that we didnt requested but used as guard digits
if (overflow flag == true)

ss = std::string("Overflow:") + ss; // Set overflow in the return string
delete a; // Delete the all;

return ss; // Return Pi with the number of digits

}

Time comparison is that the 32bit is faster in the range of r digits that both algorithm can
handle. This is not a surprise since 64-bit integer arithmetic is more time consuming that
the equivalent 32bit integer arithmetic.

1t performance algorithm

1,000,000
100,000

10,000

msec

1,000
100
10

1

()

™
02

n I R - T T VR VS
AR AR IR RN M R\ R M M S 2

I
N AN DR AN N, AN St N B o
S ARG

Digits of 1t
e SPigOt 64,8 e Spigot 32,flex Algorithm x

Note: The algorithm x is referring to calculating m using arbitrary precision arithmetic
and the Borwein algorithm, see my paper on that subject.

Gosper Algorithms for it

As it has been mention in the previous section, Rabinowitz-Wagon Spigot Algorithms for
7 requires approximately 3.3 terms per digits of 7. However, Gosper page formula for it
can also be used and it is more efficient since it requires less terms to be evaluated per
digits. The number of digits you get is approx. 1.1 digit or if you evaluate 10 terms you
get 11 valid digits of m. This is approx. 3 times less work to perform per digits, however
as always you do not get things for free. Each terms is a little bit more complicated to
handle and you quicker reach the limit of the integer representation so for all practical
purpose you need to implement this algorithm using 64-bit integer arithmetic only.

23 August 2022 Page 9

Practical implementation of Spigot Algorithms for Transcendental Constants

The Gosper formula is:

~ S n(5n+3)(2n — 1! ()
”‘3+ZZ 27130 + 2)!

Which expand into this series:

—3+18+ 2x3 13 + 35 18 + A7 (...)
= 60(7%X8X%X3 10x 11 x 3 13x14 %3)

And:

3 g 6 13 15 18 28 6 _ 24 n(2n—-1)
T +_(T e8| " 330 +816(T 3Emi T £)>)

This is the way we want to have the series expanded so we can quickly identifies the

different Spigot elements. This is well-known mixed-radix base ¢ =

(i S 15 28 M) with respect to n=(3;8,13,18,5n-2,..).

60’168’ 330’816’ 3(9(n2+n)+2)

As the fraction or two terms is always smaller than % you would get d precision with d=
log(10%) => d ~ — terms.

log(13) 0.9

The new simple excel sheet calculating the digits in 7 as the one below, se [14] for a
detailed explanation of the formula in each cell. The & digit is showing up in the gray
column below as 3.1415. Now the number of terms you would need to calculate n digits
of the digits m is bound by digits/0.9 see [16]. In the below table we see that we only need
6 terms to get approximately seven correct digits which is a lot less that Rabinowitz-

Wagon algorithm. However you also notice that the mixed radix based g quickly get into
some high numbers that can cause overflow if not carefully managed.

Spigot it - Gosper
Terms 0 1 2 3 4 5

A 1 6 15 28 45
B 60 168 330 546 816
Initialize 3 8 13 18 23 28
Scale 30 80 130 180 230 280
Carry 3 1 0 0 0 0
Sum 31 80 130 180 230 280

23 August 2022 Page 10

Practical implementation of Spigot Algorithms for Transcendental Constants

remainders 1 20 130 180 230 280 ‘
Scale 10 200 1300 1800 2300 2800
Carry 1 4 48 75 112 135

Sum 14 248 1375 1912 2435 2800
remainders 4 8 31 262 251 352
Scale 40 80 310 2620 2510 3520
Carry 4 1 12 120 112 180

Sum 41 92 430 2732 2690 3520
remainders 1 32 94 92 506 256
Scale 10 320 940 920 5060 2560
Carry 1 5 30 45 252 135

Sum 15 350 985 1172 5195 2560
remainders 5 50 145 182 281 112
Scaler 50 500 1450 1820 2810 1120
Carry 5 9 54 75 140 45

Sum 59 554 1525 1960 2855 1120
remainders 9 14 13 310 125 304
Scaler 90 140 130 3100 1250 3040
Carry 9 2 6 135 56 135

Sum 92 146 265 3156 1385 3040
remainders 2 26 97 186 293 592
Scaler 20 260 970 1860 2930 5920
Carry 2 4 36 90 140 315

Sum 24 296 1060 2000 3245 5920

With only six terms, we get seven correct digits of 1t (3.141592). Only drawbacks with
Gosper algorithm over the Rabinowitz-Wagon Spigot Algorithms for = is that the mixed

radix based (=, = 12 2 _BERD |) yield higher that the Rabinowitz-
60’ 168”3307 816" """’ 3(9(n2+n)+2)

234 _n
5’7’9 " 2n+1
using 64-bit integer arithmetic. On the other hand, we do not needs as many terms as the
Rabinowitz-Wagon Algorithm. For a wanted precision of d digits, we need for the

Wagon algorithm that used (% ,) This leads to faster overflow even when

Rabinowitz-Wagon algorithm n=(% + 1). For the Gosper algorithm, we need n~ %.

Dividing the two formula you get ratio ~3 + (Z—9=> or 3 for larger number of d. e.g lets

assume you need to find 1,000,000 digits precision of . The largest term need for Gosper
uo 10°
while for Rabinowitz-wagon it is

even with the reduced number of terms is)
~912 ~2x106

23 August 2022 Page 11

Practical implementation of Spigot Algorithms for Transcendental Constants

Clearly, we need to expect the Gosper algorithm to overflow faster for large d than the

Rabinowitz-Wagon algorithm.

64-bit version:

Algorithm 2.2 pi_spigot_gosper 64()

// Gosper algorithm

// A Column: 1,6,15,28,45,... 2n(n-1)-n

// B Column: 60, 168, 330, 546, 816,... 3(9(n+l)n+2)

// Initialization values:3, 8, 13, 18, 23 28,... 5n-2
std::string pi_spigot_gosper_64(int digits, int no dig = 1)

static unsigned long f_table[] = { 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,

100000000 };
bool first_time = true;
bool overflow_flag = false;
char buffer[32];
std::string ss;
int dig;
unsigned int car, no_carry = 0;

unsigned int no_terms; // No of terms to complete as a function of digits
unsigned long f, f2; // New base 1 decimal digits at a time
unsigned long dig n; // dig_n holds the next no_dig digit to add

unsigned _int64 carry, a, b, tmp64;
ss.reserve(digits + 16);

if (no_dig > 8) no_dig = 8; // ensure no_dig<=5

if (no_dig < 1) no_dig = 1; // Ensure no_dig>0

// Since we do it in trunks of no_dig digits at a time we need to ensure digits is

divisble with no_dig.

dig = (digits / no_dig + (digits%no_dig>@ ? 1 : @)) * no_dig;

dig += no_dig; // Extra guard digits

no_terms = (unsigned int)(dig * ©.9) + 1; // Calculate the number of terms needed
unsigned _int64 *acc = new unsigned _int64[no_terms + 1]; // Allocate the needed

accumulator
f = f_table[no_dig]; // Load the initial f
f2 = f_table[no dig - 1]; // Load the initial 2
for (int i = dig; i >= @ && overflow_flag == false; i -
{
carry = 0;

= no_dig, first_time = false)

no_terms = (unsigned int)(i * ©.9) + 1; // Calculate the number of terms needed
for (int j = no_terms; j>0 && overflow_flag == false; --j)

*= (§ + 1); // Take the previous column A and multiply it with carry

overflow_flag = true; // Check for overflow

{
a=2%*(j+1)-1; // Create Column A terms
a
if (carry > ULLONG_MAX / a)
carry *= a;
tmpe4d = f;
if (first_time == true)
{
tmp64d *= f2;

tmp64 *= (5 * (§ + 1) - 2);

}

else
tmp64 *= acc[j];
if (carry > ULLONG_MAX - tmpé64)
overflow_flag = true;
carry += tmp64;

// Create the initialized value

b =3j; //Assign it to 64bit variable b to avoid 32bit overflow.

b=3%*(9* (b+1)* + 2);
acc[j] = carry % b;
carry /= b;

// Create Column B terms

23 August 2022

Page 12

Practical implementation of Spigot Algorithms for Transcendental Constants

}

if (first_time == true)
{
tmp64 = f; tmp6d *= 3 * f2;
acc[0] = (tmp64 + carry);
}
else
acc[@] = acc[@] * f + carry;
dig n = (unsigned)(acc[0] / f);
car = (unsigned)(dig_n / f);
dig n %= f;
// Add the carry to the existing number for PI calculated so far.
if (car > 9)
{
++no_carry;
for (int j = ss.length(); car > @ & j > 0; --3j)
{
int dd;
dd = (ss[j - 1] - '@') + car;
car = dd / 1e;
ss[j - 1] =dd % 10 + '9";

}
(void)sprintf(buffer, "%0*lu", no_dig, dig n);
ss += std::string(buffer);
acc[@] %= f;
}

ss.insert(1, ".");// add a come after the first digit to create 3.14...
if (overflow_flag == false)
ss.erase(digits + 1); // Remove the extra digits that we didnt requested.
else
ss = std::string("Overflow:") + ss;
delete acc;
return ss;

}

The above mention algorithm can find n and for each loop, we can find between one and
eight digits. Not surprisingly, the more digits we find per loop the faster the overall
algorithm is as showed in below diagram. The number 1 to 8 refer to how many digits we
find per loop and in calculation, m with digits from 32 to 32,768 digits and the timing on
the Y-axis is milliseconds.

23 August 2022 Page 13

Practical implementation of Spigot Algorithms for Transcendental Constants
Spigot - Gosper
100,000
10,000

1,000

msec

100

10

N

32 64 128 256 512 1,024 2,048 4,096 8,192 16,384 32,768

Digits of 1t
— c—) 3 c—] c— 6 —7 —F

Notice the scale is logarithm, to find r eight digits at a time is approximately 10 times
faster that applying the algorithm one digit at a time

Spigot Algorithm for e

An Algorithm for calculation of e to an arbitrary precision limit was publish back in 1967
by Sale [2]. It devised a spigot algorithm for the calculation of the transcendental number
e. The original article listed an Algol60 source program for the calculation and I took the

liberty to convert it to C++ and added a few improvements. The e can be evaluated by the

infinite series

1 1 1 1
RN TR TR TR
Alternatively, in another way as:

e= 1+1(1+%(1+%<1+---(1+%))))

Except for the two first term all other are less than one and we can further rewrite is as:

=2 ! 1 ! 1 ! 1
e = +§(+§< +Z(+)>)

We can now create our usual Spigot table for e as shown below: e is showing up in the
grey column as 2.71828182845

Spigot e

23 August 2022 Page 14

Practical implementation of Spigot Algorithms for Transcendental Constants

Terms 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
A i1 1 1 1 1 1 1 1 1 1 1 1 1
B 10 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Initialize 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Scale 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Carry 7 4 3 2 1 1 1 1 1 0 0 0 0 0
Sum 17 14 13 12 11 11 11 11 11 10 10 10 10 10 10
remainders 7 0 1 0 1 5 4 3 2 0 10 10 10 10 10
Scale 70 0 10 0O 10 50 40 30 20 0 100 100 100 100 100
Carry 1 3 0 3 9 6 4 2 0 9 9 8 7 6
Sum 71 3 10 3 19 56 44 32 20 9 109 108 107 106 100
remainders 1 1 1 3 4 2 2 0 2 9 10 0 3 8 10
Scale 10 10 10 30 40 20 20 0O 20 90 100 0O 30 80 100
Carry 8 6 9 8 3 2 0 3 9 9 0 2 6 6
Sum 18 16 19 38 43 22 20 3 29 99 100 2 36 86 100
remainders 8 0 1 2 3 4 6 3 2 9 1 2 10 2 10
Scale 80 0O 10 20 30 40 60 30 20 90 10 20 100 20 100
Carry 2 5 6 7 8 9 4 3 9 1 2 7 1 6
Sum 82 5 16 27 38 49 64 33 29 91 12 27 101 26 100
remainders 2 1 1 3 3 1 1 1 2 1 1 3 10 12 10
Scaler 20 10 10 30 30 10 10 10 20 10 10 30 100 120 100
Carry 8 6 9 6 1 1 1 2 1 1 3 8 9 6
Sum 28 16 19 36 31 11 11 12 21 11 13 38 109 126 100
remainders 8 0 1 0 1 5 4 4 3 1 2 2 5 0 10
Scaler 80 0 10 0O 10 50 40 40 30 10 20 20 50 0 100
Carry 1 3 0 3 9 6 5 3 1 1 1 3 0 6
Sum 81 3 10 3 19 56 45 43 31 11 21 23 50 6 100
remainders 1 1 1 3 4 2 3 3 4 1 10 11 11 6 10
Scaler 10 10 10 30 40 20 30 30 40 10 100 110 110 60 100
Carry 8 6 9 8 4 4 4 4 1 9 9 8 4 6
Sum 18 16 19 38 44 24 34 34 41 19 109 118 114 66 100
remainders 8 0 1 2 4 0 6 2 5 9 10 10 10 10 10
Scaler 80 0O 10 20 40 0O 60 20 50 90 100 100 100 100 100
Carry 2 5 7 8 1 9 3 6 9 9 9 8 7 6
Sum 82 5 17 28 41 9 63 26 59 99 109 108 107 106 100
23 August 2022 Page 15

Practical implementation of Spigot Algorithms for Transcendental Constants

remainders 2 1 2 0 1 3 0 2 5 9 10 0 3 8 10
Scaler 20 10 20 0 10 30 0O 20 50 90 100 0O 30 80 100
Carry 2 8 6 0 3 5 0 3 6 9 9 0 2 6 6

Sum 28 16 20 3 15 30 3 26 59 99 100 2 36 86 100
remainders 8 0 2 3 0 0 3 2 5 9 1 2 10 2 10
Scaler 80 0 20 30 0 0O 30 20 50 9 10 20 100 20 100
Carry 8 4 9 7 0 0 4 3 6 9 1 2 7 1 6

Sum 84 9 27 30 0 4 33 26 59 91 12 27 101 26 100
remainders 4 1 0 2 0 4 5 2 5 1 1 3 10 12 10
Scaler 40 10 0 20 0O 40 50 20 50 10 10 30 100 120 100
Carry 4 5 1 5 1 7 7 3 5 1 1 3 8 9 6

Sum 45 11 5 21 7 47 53 25 51 11 13 38 109 126 100
remainders 5 1 2 1 2 5 4 1 6 1 2 2 5 0 10
Scaler 50 10 20 10 20 50 40 10 60 10 20 20 5O 0 100
Carry 5 8 7 3 5 9 6 2 6 1 1 1 3 0 6

Sum 58 17 23 15 29 56 42 16 61 11 21 23 50 6 100

As can be seen you get 12 correct digit using the first 15 terms of the series expansion
listed in vertical in bold in column two. Now we need to figure out how many terms we

would need for a giving number of wanted digits, d. If the last term of % is less than
10~(@*1) where d is the number of digits wanted then we can stop. To avoid overflow we
use Stirling approximation formula for n! ~v2nd (g)d and take the log() on both side to
get:

1 1

E < 10d+1 =>
n! < 109+1 =>

Now take log() on both side and you get:

n(log(n) — 1) + %log(an) < (d + 1)log(10)

In order to solve n for a giving number of digits, d we use the Newton iteration that
quickly finds n in typical 4-5 iterations.

Newton formula:

fOm)

Xn+1 =xn—m—
n

23 August 2022 Page 16

Practical implementation of Spigot Algorithms for Transcendental Constants

And substituting f(x) and f’(x) in you get:

X ((10g(xa) — 1) + 5 log(2nd) — (d + 1)log(10)

Xn41 = Xpn —

1
m + log(x,,)

The number of terms for 10 digits precisions are 15 terms; for 100 digits precision 71
terms and for 1000 digits precision is 451 terms just to give you an idea of what we are
expecting as we scale the number of digits for e.

Algorithm 3.1 spigot_e()
// Spigot algorithm for e
// From The computer Journal 1968 (A H J Sale) written in Algo 60 and ported to
// c++ with some modifications
std::string spigot_e(int digits)
{
unsigned int m;
unsigned int tmp, carry;
double test = (digits + 1) * log(19);
bool first_time = true;
unsigned int *coef;
std::string ss("2.");
ss.reserve(digits + 16);
double xnew, xold;

// Stirling approximation of m!~Sqrt(2*pi*digits)(digits/e)~digits.
// Taken log on both side you get:
// m*(Math.log((m)-1)+0.5*Math.log(2*Math.pi*m);
// Use Newton method to find x in less that 4-5 iterations
for (xold = 5, xnew = ©; ; xold=xnew)
{
Double f = xold*(log(xold)-1)+0.5*1log(2*3.141592653589793*x01ld);
double f1 = 0.5 / xold + log(xold);
xnew = xold - (f - test) / f1;
if ((int)ceil(xnew) == (int)ceil(xold))

break;
}
m = (unsigned int)ceil(xnew);
if (m < 5)
m = 5;

coef = new unsigned int[m+1];

// Loop for each digit
for (int i = 1; i <= digits; ++i, first_time = false)

{
carry = 0;
for (int j =m; j >= 2; j--)
{
if (first_time == true)
tmp = 10;
else

tmp = coef[j] * 10;
tmp += carry;
carry = tmp / (3);

23 August 2022 Page 17

Practical implementation of Spigot Algorithms for Transcendental Constants
coef[j] = tmp % (J);
ss.append(1, (char)(carry+'0"));

delete coef;
return ss;

}

Performance is outstanding compare to regular calculation using exp(1) as a Taylor
series.

See chart below. Spigot-e outperformed the traditional algorithm with a factor of 70-90
that factor increases the more digits we need above 32767digits

Spigot-e versus exp(1)

1,000,000
100,000
10,000

1,000

msec

100

10

32 64 128 256 512 1024 2048 4096 8192 16384 32768
Digits
e Spigot-e exp(1)

Spigot Algorithm for In(2)

Let us turn our attention to the In(2) another transcendental constant. The series
expansion for In(2) is Yoy ﬁ
a Horner type representation and you get:

. As usually, we need to rewrite the series expansion into

In(2) = 3%, = =>

2™n

1 1 1 1 1
@) =g+ttt Es T

1 171 1 1 1
In(2) = §+§(§+223+234+245+"'> =

23 August 2022 Page 18

Practical implementation of Spigot Algorithms for Transcendental Constants

1(2)— 1+ 1+1 1+1+1+
A 4 T 2\213 " 222 T 235
In(2) — 1 11 11 101 1
Me)=13721272 2\214 " 225
2y L1 1(1,] 1+1(1 N
n 2721272\ " 2\8 " 2\215
1 1/1 1,1 1.1 1
nQ-G+3(GH3G+3G G+ D)

)
)

)

=>

>

This is the way we want to have the series expanded so we can quickly identifies the

different Spigot elements. This is a mixed-radix base ¢ = (

to In(2)=(; =, =, =

272°2'2"
value and not a whole number, compare to the other algorithm presented here. The table
formula will still work in principle but we ran into a problem using floating point

1111 1

2’4’6’8’ 2n’
. .1 e
....). Only change is that we see we have a fraction 5 as the initialized

) with respect

arithmetic since we introduce rounding errors in our calculation and sure enough the table

formula will only work correctly for up to 18 digits of In(2) where after we get incorrect

digits for In(2). To fix this issue we need to alter the table formula to accommodate

working with the correct fraction and carry it through our calculations.

The spigot table will now look like the above for finding In(2) digits. And the second
column is the result with 15 terms giving In(2)=0.69314

Spigot LN2
Terms 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A S 1 1 1 1 4o A 1 Lo 4 1
B 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
2(n+1) 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Init N 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Init DN 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Scale N 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Carry 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sum N 12 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Sum DN 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Remainder N 6 1 5 5 1 5 5 5 5 1 5 5 5 5 1 5
Remainder DN 1 2 3 4 1 6 7 8 S 2 11 12 13 14 3 16
Scale N 60 10 50 50 10 50 50 50 50 10 50 50 50 50 10 5O
Carry 6 9 13 10 8 7 6 5 4 4 3 3 2 2 2 1 0
Sum N 69 36 80 82 17 8 8 8 8 16 83 74 76 78 13 50
23 August 2022 Page 19

Practical implementation of Spigot Algorithms for Transcendental Constants

Sum DN 1 2 3 4 1 6 7 8 9 2 11 12 13 14 3 16
Remainder N 9 0 2 1 1 1 1 1 14 0 17 1 24 11 1 9
Remainder DN 1 1 3 2 1 3 7 4 9 1 11 6 13 7 3 8
Scale N 90 0O 20 10 10 10 10 10 140 0 170 10 240 110 10 90
Carry 9 2 5 5 6 3 3 6 10 5 11 7 13 9 4 5 0
Sum N 92 5 35 22 13 19 52 50 185 11 247 88 357 138 25 90
Sum DN 1 1 3 2 1 3 7 4 9 1 11 6 13 7 3 8
Remainder N 2 1 5 1 1 10 1 5 1 5 2 19 12 1 5
Remainder DN 1 1 3 1 1 3 7 2 9 1 11 3 13 7 3 4
Scale N 20 10 50 10 10 10 100 10 50 10 50 20 19 120 10 50
Carry 3 11 12 9 8 6 9 5 6 8 6 9 12 10 4 6 0
Sum N 31 22 77 18 16 37 135 22 122 16 149 56 320 148 28 50
Sum DN 1 1 3 1 1 3 7 2 9 1 11 3 13 7 3 4
Remainder N 1 0 5 0 0 1 9 1 14 17 8 8 4 1
Remainder DN 1 1 3 1 1 7 1 9 1 11 3 13 7 3 2
Scale N 10 0 50 0 0 10 90 10 140 0O 170 20 80 80 40 10
Carry 1 4 8 1 3 7 11 10 10 5 10 6 7 9 7 2 0
Sum N 14 8 53 3 7 43 160 20 185 10 236 41 197 129 46 10
Sum DN 1 1 3 1 1 3 7 1 9 1 11 3 13 7 3 2
Remainder N 4 0 5 1 1 1 6 0 5 0 16 5 15 3 4 1
Remainder DN 1 1 3 1 1 3 7 1 9 1 11 3 13 7 3 1
Scale N 40 0O 50 10 10 10 60 0 50 0 160 50 150 30 40 10
Carry 4 6 12 8 7 4 5 2 5 6 13 12 8 6 9 5 0
Sum N 46 12 74 17 14 25 74 5 104 13 292 74 228 93 55 10
Sum DN 1 1 3 1 1 3 7 1 9 1 11 3 13 7 3 1

Now we need to figure out how many terms we would need for a giving number of

wanted digits, d. if we see the fraction between two terms in the series expansion we get
1

(n+1)2"*t1 _ n 1
1

1
n2n

2(n+1) 2+

Or a factor slightly less than half the previous term. The is interesting enough the same
reduction in terms as for the Rabinowitz-Wagon algorithm that yield the number of terms

you would need to calculate for n digits of the In(2) is bound by (an +1).
We are now ready to present the algorithm 4.1 for the calculation of In(2)

Algorithm 4.1 spigot_In2 64()

// 64 bit version of spigot algorithm for LN2

// It has automatic 64bit integer overflow detection in which case the result
// start with the string "Overflow...."

// A Column: 1,1,1,...,1

23 August 2022 Page 20

Practical implementation of Spigot Algorithms for Transcendental Constants

// B Column: 2,2,2,2,2,...,2
// Initialization values:0.5,0.25,...,1/(2*%2%n)
std::string spigot_1n2_64(int digits, int no dig = 1)

{
static unsigned long f_table[] =

{1,10,100,1000,10000, 100000, 1000000, 10000000 ,100000000} ;

digits

digits

bool first_time = true; // First iteration of the algorithm
bool overflow_flag = false; // 64bit integer overflow flag
char buffer[32];

std: :string ss; // The std::string that holds the 1n2

int dig;

unsigned int car, no_carry = 0;

unsigned int no_terms; // No of terms to complete as a function of
unsigned long f; // New base 1 decimal digits at a time
unsigned long dig n; // dig_n holds the next no_dig digit to add

unsigned long carry;
unsigned _int64 tmp_n, tmp_dn;
ss.reserve(digits + 16);

if (no_dig > 8) no_dig = 8; // ensure no_dig<=8

if (no_dig < 1) no_dig = 1; // Ensure no_dig>®

// Since we do it in trunks of no_dig digits at a time we need to ensure
is divisble with no_dig.

dig = (digits / no_dig + (digits%no_dig>0 ? 1 : @)) * no_dig;

dig += no_dig; // Extra guard digits

no_terms = (unsigned int)(1@ * dig / 3 + 3); // Calculate the number of

terms needed

1 :

no_dig, first_time

// Allocate the needed accumulators

unsigned _int64 *acc_n = new unsigned _int64[no_terms + 1];

unsigned _int64 *acc_dn = new unsigned _int64[no_terms + 1];

f = f_table[no_dig]; // Load the initial f

carry = 0; // Set carry to ©

//Loop for each no_dig

for (int i = dig; >= 0 && overflow_flag == false; i -= first_time == true
false)

noHe|

{

// Calculate new number of terms needed

no_terms = (unsigned int)(10 * i / 3 + 3);

// Loop for each no_terms

for (int j = no_terms; j>0 && overflow_flag == false; --j)

if (first_time == true)
{// Calculate the initialize value
tmp_dn = (7 + 1) * 2;

tmp_n = 1;
}
else
{
tmp_n = acc_n[j];
tmp_dn = acc_dn[j];
}
tmp_n *= f; // Scale it

// Check for 64bit overflow. Not very likely

if (carry > @ && tmp_dn > (ULLONG_MAX - tmp_n) / carry)
overflow_flag = true;

tmp_n += carry * tmp_dn;

carry = (unsigned long)(tmp_n / (2 * tmp_dn));

23 August 2022 Page 21

Practical implementation of Spigot Algorithms for Transcendental Constants

acc_n[j] = tmp_n % (tmp_dn * 2);
acc_dn[j] = tmp_dn;
¥

if (first_time == true)
{
tmp_n = f / 2;
acc_n[0@] = (tmp_n + carry);
acc_dn[@] = 1;
dig n = (unsigned)(acc_n[@] / f);
b
else
dig n = (unsigned)(acc_n[@] + carry / f);
car = (unsigned)(dig.n / f);
dig n %= f;
// Add the carry to the existing number for 1n(2) calculate so far.
if (car > 9)
{
++no_carry;
for (int j = ss.length(); car > @ && j > 0; --3j)
{
int dd;
dd = (ss[j - 1] - '@") + car;
car = dd / 10;
ss[j - 1] =dd % 10 + '0’';
b

(void)sprintf(buffer, "%0*1u", first_time == true ? 1 : no dig,
dig n);
ss += std::string(buffer);
if (first_time == true)
acc_n[0] %= f;
else
acc_n[@] = carry % f;
carry = 0; // carry %= f;
}

ss.insert(1, ".");// add a come after the first digit to create 0.69...
if (overflow_flag == false)
ss.erase(digits + 1); // Remove the extra digits that we didnt
requested.
else
ss = std::string("Overflow:") + ss;

delete acc_n;
delete acc_dn;
return ss;

}

The above mention algorithm can find In(2) and for each loop, we can find between one
and eight digits at a time. Not surprisingly, the more digits we find per loop the faster the
overall algorithm is as shown in below diagram. The number 1 to 8 refer to how many
digits we find per loop and in calculation, In(2) with digits from 32 to 32,768 digits and
the timing on the Y-axis is milliseconds. For reference, also the Taylor series expansion
of In(2) using arbitrary precision is also show (LN2 table). It is quite interesting to see
that the spigot algorithm for In(2) beat the traditional way of calculation In(2) using

23 August 2022 Page 22

Practical implementation of Spigot Algorithms for Transcendental Constants

arbitrary precision with a factor of approximately 80 times compare to the spigot
algorithm finding In(2) with 8 digits at a time.

Spigot In(2)
1,000,000
100,000
10,000
(S]
a 1,000
€
100
10
1
32 64 128 256 512 1024 2048 4096 8192 16384 32768
Digits of In(2)
— —) 3 el em—5 6 7 8 LN2 Table

And in BBP style notation: %P(1,2,1, (1)

Spigot algorithm for In(10)

Next in turn is In(10) another useful transcendental constant. The series expansion for
In(x) is Yip=1q % (xT_l)" . For x=10 you get In(10)= Z;‘{;l% (%)" as usually we need to
rewite the series expansion into a horner type representation and you get:

In(10)=X52y = (2)"=>

1(10)_9+1 9 2+1 9 3+1 9 4+1 9 S s
n(10) =75+5G" +3G +31G9)" 5G9 -

1(10)—9+9(19+192+193+194+ >_>
n —\10 10\210 3(10) 4(10) 5(10) N

In(10) = 9+9 9+9<19+192+193+) o
n ~\10 10\20 10\310 4(10) 5(10) N

In(10) = 9+9 9+9 9+9<19+192+) o
n V110 10\20 10\30 10\410 5(10) N

23 August 2022 Page 23

Practical implementation of Spigot Algorithms for Transcendental Constants

2 0(2 2 2 (2.
ln(10)—(10+10 (20+10 (30+10 (40+10 (50+)))))

This is the way we want to have the series expanded so we can quickly identifies the

. . . .) 9 9 9 9 9 .
different Spigot elements. This is a mixed-radix base ¢ = (—,—,—,—,—,) with
s o o 10°20°30° 40’ 10

respect to ln(IO)Z(%;E,E,R, er)

Now we need to figure out how many terms we would need for a giving number of
wanted digits, d. We are a little bit worry since the factor for each term is multiply with
0.9 which is nearly twice as high as the 0.5 for In(2). Therefore, we would expect a much
slower convergence rate that translate into more terms is needed for a giving number of
wanted digits d.

1 9\n+1
t (n+1)(10)

1,9
—_(=—\n
(o)

If we see the fraction between two terms in the series expansion we ge

n) 9 .
) 10(1+%) for large n it is ~ 0.9. For In(2) we got ~ 0.5 for each term, so for In(10)
we need 0.9" = 0.5 more terms than for In(2). Taken In() on both side we get

=ln(O.S)

~6.6 more terms.
In(0.9)

Algorithm 5.1 spigot In_64()

// 64 bit version of spigot algorithm for LN(10)

// It has automatic 64bit integer overflow detection in which case the result
start with the string "Overflow...."

// A Column: x-1,x-1,x-1,...,x-1

// B Column: X,X,X,X,X,...,X

// Initialization values: (x-1)/(x(n+1))...

std::string spigot_ln_64(unsigned int x, int digits, int no_dig = 1)

static unsigned long f_table[] = { 1, 10, 100, 1000, 10000, 100000,
1000000, 10000000, 100000000 };

bool first_time = true; // First iteration of the algorithm

bool overflow_flag = false; // 64bit integer overflow flag

bool bit32_overflow = false;

char buffer[32];

std::string ss; // The std::string that holds the 1ln(x)

int dig;

unsigned int car, no_carry = 0;

unsigned int no_terms; // No of terms to complete as a function of
digits

unsigned long f; // New base 1 decimal digits at a time

unsigned long dig n; // dig_n holds the next no_dig digit to add

unsigned _int64 carry;
unsigned _int64 tmp_n, tmp_dn;
ss.reserve(digits + 16);

int factor;

if (x < 1) return std::string("Domain Error of argument. Required x>=1");

if (no_dig > 8) no_dig = 8; // ensure no_dig<=8

23 August 2022 Page 24

Practical implementation of Spigot Algorithms for Transcendental Constants

if (no_dig < 1) no_dig = 1; // Ensure no_dig>0

// Since we do it in trunks of no_dig digits at a time we need to ensure
digits is divisble with no_dig.

dig = (digits / no_dig + (digits%no_dig>e ? 1 : @)) * no_dig;

dig += no_dig; // Extra guard digits

// Calculate the number of terms needed

factor=(int)ceil(10*1og(®.5) / log((double)(x - 1) / (double)x));

no_terms = (unsigned int)(factor * dig / 3 + 3);

// Allocate the needed accumulators
unsigned _int64 *acc_n = new unsigned _int64[no_terms + 1];
unsigned _int64 *acc_dn = new unsigned _int64[no_terms + 1];
f = f_table[no_dig]; // Load the initial f
carry = 9; // Set carry to ©
//Loop for each no_dig
for (int i = dig; >= 0 && overflow_flag == false; i -= first_time == true
? 1 : no_dig, first_time = false)
{
// Calculate new number of terms needed
no_terms = (unsigned int)(factor * i / 3 + 3);
// Loop for each no_terms
for (int j = no_terms; j>0 && overflow_flag == false; --j)

el

{
if (first_time == true)
{// Calculate the initialize value
tmp_dn = (7 + 1) * x;
tmp_n = (x-1);
¥
else
{

tmp_n = acc_n[j];
tmp_dn = acc_dn[j];

}
if (tmp_n > (ULLONG_MAX)/f)
overflow_flag = true;
tmp_n *= f; // Scale it
// Check for 64bit overflow. Not very likely
if (carry > @ && tmp_dn > (ULLONG_MAX - tmp_n) / carry)
overflow_flag = true;
tmp_n += carry * tmp_dn;
carry = (tmp_n / (x * tmp_dn));
carry *= (x-1);
acc_n[j] = tmp_n % (tmp_dn * x);
acc_dn[j] = tmp_dn;
¥

if (first_time == true)
{
tmp_n = (x-1) * f;
if (carry > @ &% tmp_n > (ULLONG_MAX - carry * x))
overflow_flag = true;
acc_n[@] = (tmp_n + carry*x);
acc_dn[@] = x;
dig n = (unsigned)(acc_n[@] / (f*acc_dn[@]));
}

{
if (acc_n[@] > (ULLONG_MAX - carry * acc_dn[0]) / f)

else

23 August 2022 Page 25

Practical implementation of Spigot Algorithms for Transcendental Constants

overflow_flag = true;
dig n = (unsigned)((acc_n[@] * £ + carry * acc_dn[0]) /
(f*acc_dn[@]));

}
car = (unsigned)(dig.n / f);
dig n %= f;
// Add the carry to the existing number for 1ln(x) calculate so far.
if (car > 9)
{
++no_carry;
for (int j = ss.length(); car > @ && j > 0; --3j)
{
int dd;
dd = (ss[j - 1] - '@") + car;
car = dd / 10;
ss[j - 1] =dd % 10 + '0’';
¥

(void)sprintf(buffer, "%0*1lu", first_time == true ? 1 : no_dig,
dig n);
ss += std::string(buffer);
if (first_time == true)
acc_n[@] %= f*acc_dn[@];

else
{
acc_n[@] = acc_n[@] * f + carry *acc_dn[@];
acc_n[@] %= f * acc_dn[0@];
}
carry = 0;
}

ss.insert(1, ".");// add a come after the first digit to create 0.69...
if (overflow_flag == false)
ss.erase(digits + 1); // Remove the extra digits that we didnt
requested.
else
ss = std::string("Overflow:") + ss;

delete acc_n, acc_dn;
return ss;

}

The above mention algorithm can find In(10) and for each loop, we can find between one
and eight digits at a time. Not surprisingly, the more digits we find per loop the faster the
overall algorithm is as shown in below diagram. The number 1 to 8 refer to how many
digits we find per loop and in calculation, In(10) with digits from 32 to 32,768 digits and
the timing on the Y-axis is milliseconds. For reference, also the Taylor series expansion
of In(10) using arbitrary precision is also shown (LN10 table). It is quite interesting to see
that the spigot algorithm for In(10) beat the traditional way of calculation In(10) using
arbitrary precision with a factor of approximately 8 times compare to the spigot algorithm
finding In(10) 7 digits at a time. This is much less than the speedup for In(2) versus the
traditional algorithm using arbitrary precision. The reason is that the arbitrary precision
algorithm are using argument reduction to speed up the Taylor series for In(10) a

23 August 2022 Page 26

Practical implementation of Spigot Algorithms for Transcendental Constants

technique we unfortunately can’t use in in the current implementation of the spigot
algorithm and therefore we will see that the speed advantages using a spigot algorithm
will diminish with higher number of In(x).

Spigot In(10)
1,000,000
100,000
10,000

1,000

msec

100

10

. Digits of In(10)
32 64 128 256 512 1024 2048 4096 8192 16384 32768
— —) 3 el —5 6 7 8 LN(10) table

Algorithm 5.1 can in principle handle x>1. However as we increase x we also notice that
the convergence rate decrease requiring more terms per digits. Below graph, show the
timing of the algorithm for various x calculating four digits at a time. As can we seen we
have a linear dependency of x and as x increase the advantaged of using this spigot
algorithm diminish. Around x>50 the algorithm performed worse than the arbitrary
precision version.

23 August 2022 Page 27

Practical implementation of Spigot Algorithms for Transcendental Constants

In(x) timing in msec

250,000
200,000

150,000

msec

100,000 e Algorithm 5.1

50,000

2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

In(x)

I mention before that we unfortunately cannot apply the speed up trick of argument
reduction. However, that is not entirely correct. If we look at In(10) we could also rewrite
it to In(10)=In(2*5)=In(2)+In(5). This at first glance seems counterproductive since we
would now have to call our Algorithm 5.1 twice. First with In(2) and secondly with In(5)
and then have to add them together. However adding two arbitrary precision number is an
O(n) complexity and therefore fast so it will not contribute to the overall calculation time.
Based on the above graph for performance In(2) can be done in 14.5sec for 32,768 digits
and In(5) 47.7sec. Adding them together, we get 62.2sec compared to the 99sec for doing
In(10) directly and 37% speed improvement. Great however we can do better. Continue
along the above previous line we could also rewrite In(10) as:

In(10) =In (23 ;—2) =1In(23) +In (%) =3In(2) + ln(%)

Now both argument is small In(2) and In(1.25) respectively and we expect than In(1.25)
can be done faster since it is smaller than In(2). A multiplying an arbitrary precision
number with a single digit constant 3 is also of O(n) complexity and therefore fast.

Now we only need to change algorithm 5.1 to be able to be called with a fraction (%).

However, that is surprisingly easy since the algorithm itself is working on fraction. The
only think we need is to change is the initialize value to a fraction instead of an integer.
See Algorithm 5.2 below.

Algorithm 5.2 Spigo_Inxy 64()
// 64 bit version of spigot algorithm for LN(x/y) fraction
// It has automatic 64bit integer overflow detection in whcih case the result
start with the string "Overflow...."
// A Column: x-1,x-1,x-1,...,x-1
// B Column: X,X,X,X,X,...,X
// Initialization values: (x-1)/(x(n+1))...
std::string spigot_lnxy_64(unsigned int x, unsigned int y, int digits, int no_dig
= 1)
{

23 August 2022 Page 28

Practical implementation of Spigot Algorithms for Transcendental Constants

100000

of dig

add

digits

digits

21

static unsigned long f_table[] = { 1, 10, 100, 1000, 10000, 100000,

0, 10000000, 100000000 };
bool first_time = true; // First iteration of the algorithm
bool overflow_flag = false; // 64bit integer overflow flag

bool bit32_overflow = false;
char buffer[32];

std::string ss; // The std::string that holds the 1ln(x)
int dig;

unsigned int car, no_carry = 0;

unsigned int no_terms; // No of terms to complete as a function
its

unsigned long f; // New base 1 decimal digits at a time
unsigned long dig n; // dig_n holds the next no_dig digit to

unsigned _int64 carry;
unsigned _int64 tmp_n, tmp_dn;
ss.reserve(digits + 16);

int factor;

if (x < y) return std::string("Domain Error of argument.Required x>y");
if (x <= @) return std::string("Domain Error of argument. Required x>0");

if (no_dig > 8) no_dig = 8; // ensure no_dig<=8

if (no_dig < 1) no_dig = 1; // Ensure no_dig>0

// Since we do it in trunks of no_dig digits at a time we need to ensure
is divisble with no_dig.

dig = (digits / no_dig + (digits%no_dig>e ? 1 : @)) * no_dig;

dig += no_dig; // Extra guard

// Calculate the number of terms needed
factor = (int)ceil(10 * log(@.5) / log((double)(x - y) / (double)x));
no_terms = (unsigned int)(factor * dig / 3 + 3);
// Allocate the needed accumulators
unsigned _int64 *acc_n = new unsigned _int64[no_terms + 1];
unsigned _int64 *acc_dn = new unsigned _int64[no_terms + 1];
f = f_table[no_dig]; // Load the initial f
carry = 0; // Set carry to ©
//Loop for each no_dig
for (int i = dig; i >= © && overflow_flag == false; i -= first_time == true
no_dig, first_time = false)
{
// Calculate new number of terms needed
no_terms = (unsigned int)(factor * i / 3 + 3);
// Loop for each no_terms
for (int j = no_terms; j>0 && overflow_flag == false; --j)

{
if (first_time == true)
{// Calculate the initialize value
tmp_dn = (7 + 1) * x;
tmp_n = (x - y);
b
else
{

tmp_n = acc_n[]j];
tmp_dn = acc_dn[j];
}

if (tmp_n > (ULLONG_MAX) / f)
overflow_flag = true;

23 August 2022 Page 29

Practical implementation of Spigot Algorithms for Transcendental Constants

tmp_n *= f; // Scale it
// Check for 64bit overflow. Not very likely

if (carry > 0 && tmp_dn > (ULLONG_MAX - tmp_n) / carry)

overflow_flag = true;
tmp_n += carry * tmp_dn;
carry = (tmp_n / (x * tmp_dn));
carry *= (x - y);
acc_n[j] = tmp_n % (tmp_dn * x);
acc_dn[j] = tmp_dn;
}

if (first_time == true)

{
tmp_n = (x - y) * f;

if (carry > @ & tmp_n > (ULLONG_MAX - carry * x))

overflow_flag = true;

acc_n[@] = (tmp_n + carry*x);

acc_dn[@] = x;

dig n = (unsigned)(acc_n[@] / (f*acc_dn[@]));
}

{

else

if (acc_n[@] > (ULLONG_MAX - carry * acc_dn[@0]) / f)

overflow_flag = true;

dig n = (unsigned)((acc_n[@] * £ + carry * acc_dn[0]) /

(f*acc_dn[@]));

dig_n);

¥
car = (unsigned)(dig.n / f);
dig n %= f;
// Add the carry to the existing number for 1ln(x/y) calculated.
if (car > 0)
{

++no_carry;

for (int j = ss.length(); car > @ & j > 0; --3j)

{

int dd;

dd = (ss[j - 1] - '@") + car;
car = dd / 10;

ss[j - 1] =dd % 10 + '0’';

(void)sprintf(buffer, "%0*1u", first_time == true ? 1
ss += std::string(buffer);

if (first_time == true)
acc_n[@] %= f*acc_dn[0];

else
{
acc_n[@] = acc_n[@] * f + carry *acc_dn[@];
acc_n[@] %= £ * acc_dn[0];
}
carry = 0;
¥

: no_dig,

ss.insert(1, ".");// add a come after the first digit to create 2.30...
if (overflow_flag == false)

23 August 2022

Page 30

Practical implementation of Spigot Algorithms for Transcendental Constants
ss.erase(digits + 1); // Remove the extra digits that we didnt
requested.

else
ss = std::string("Overflow:") + ss;

delete acc_n, acc_dn;
return ss;

}

Running the same performance chart with Algorithm 5.2 and In(x) from 2 to 20 we get
the following performance graph for comparison.

In(x) timing in msec
250,000
200,000

150,000

msec

e Algorith A
100,000 gorithm 5

e Algorithm 5.2
50,000

N

2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

In(x)

Algorithm 5.2 totally outperformed algorithm 5.1. The reason for the jagged line of
Algorithm 5.2 is that the fraction various between one and two dependently on the In(x)
and that affect the performance. However, it scale much better than algorithm 5.1 with a
significant performance gain as In(x) increases. As an example we could rewrite In(18)
as:

In(18) = In (24;—3) = In(2%) + In (%) = 4In(2) + ln(%)

Instead of 3, we now multiply with 4, which does not cost of any performance loss and
the fraction % = 1.125 is very close to 1 and therefore fast. Notice also the dip for each

number that is a power of two. E.g. 2, 4, 8 and 16 for these numbers the addition element
will also be In(1) and therefore zero so there are nothing to add. The worst case scenario
will always be when the number is 2"-1.In these case the adding element becomes

ln(zz—;l) ~ In(2) in other words the worst case timing is 2 times the time for the In(2)

calculation regardless of the number x. The means that the algorithm scales very well
even for very higher number of x.

23 August 2022 Page 31

Practical implementation of Spigot Algorithms for Transcendental Constants

When comparing the new algorithm 5.2 with the traditional way of calculating In(10)
using arbitrary previous we see that the algorithm is more than 20-40 times faster than the
traditional calculation.

Unbounded Spigot algorithm for t

All the previous spigot algorithm requires us to know in advance the number of digits we
want. However, Gibbons [13] outline a way to compute in a steady stream the digits of ©
without prior knowledge of how many digit we need. The below source produce a steady
stream of & digits using the author own Arbitrary precision library. The source is a port
from another source from which I have lost the reference.

Algorithm 6.1 unbounded_pi()
// Unbounded PI algorithm
void unbounded_pi()
{
const int precision c1(1), c4(4), c7(7), cle(1e), c3(3), c2(2);
int_precision q(1), r(@), t(1);
unsigned k =1, 1 = 3, n = 3;
int_precision nn, nr;
int i, j;

if ((cd4*q + r - t) < n*t)

cout << (char)(n + '@') << flush;
i++;
if (1 == 1)
cout << "." << flush;
nr = c10*(r - (n*t));
n = (int)((c3*q + r) / t) - n;

g *= cle;
r = nr;
}
else {
nr = (c2*q + r)*int_precision(1l);
q *= k;
t *=1;
nn = (q*c7 + c2 + r*l) / t;
1 += 2;
k += 1;
n = nn;
r = nr;
}
}

23 August 2022 Page 32

Practical implementation of Spigot Algorithms for Transcendental Constants

Reference

The World of n. www.pi314.net/eng/salamin.php - Oct 5 2016
. A. H.J. Sale, The Calculation of e to many significant digits,
http://comjnl.oxfordjpurmals.org
3. Borwein, Pi and the AGM, Volume 4, John Willey & Sons Inc, New York, NY
1998

4. https://en.wikipedia.org/wiki/Borwein%27s_algorithm — Oct 6 2016
https://en.wikipedia.org/wiki/Bailey%E2%80%93Borwein%E2%80%93Plouffe f
ormula — Oct 6, 2016
https://en.wikipedia.org/wiki/Approximations_of %CF%80 — Oct 6, 2016
P. Borwein — The Amazing number ©t
Bailey, Borwein, Plouffe, The Quest for Pi, June 25 1996
J. Borwein, Ramanujan and PI, May 3 2012

. J Borwein, The life of Pi: From Archimedes to Eniac and Beyond, June 19, 2012

. Bailey, Borwein, Plouffe, “on the rapid Computation of Various Polylogarithmic
Constants 1996. http://www.cecm.sfu/personal/pborwein

12. Rabinowitz & Wagon, A Spigot Algorithm for the Digits of Pi, The American

Mathematical Monthly, 102 (1995) page 195-203.

13. Unbounded Spigot Algorithms for the Digits of PI

14. The world of m. http://www.pi314.net/eng/goutte.php - Dec 28 2016

15. D Bailey, A compendium of BBP-Type Formulas for Mathematical Constants.

April 29, 2013

N —

)]

20X

—_— O

23 August 2022 Page 33

